

Seventh Framework Programme

CallFP7-ICT-2013-10

Project Acronym: SPLENDID

Grant Agreement No: 610746

Project Type: COLLABORATIVE PROJECT: Small or medium scale
focused research project (STREP)

Project Full Title: Personalised Guide for Eating and Activity Behaviour
for the Prevention of Obesity and Eating Disorders

D3.2 Formal ontology for the eating and

activity behaviour domain

Nature: P (R: Report, P: Prototype, O: Other)

Dissemination Level: PU (CO: Confidential, PU: Public)

Version #: 1.0

Date: 30 September 2014

WP number and Title: WP 3 Information Processing and Inference

Deliverable Leader: AUTH

Author(s)/Contributor(s): Authors: Ioannis Sarafis (AUTH), Christos Diou (AUTH) and
Anastasios Delopoulos (AUTH)

Contributors:

Status: Submitted (Draft, Peer-Reviewed, Submitted, Approved)

FP7-610746 D3.2 Version 1.0

Page 2 of 45

Document History

Version
1
 Issue Date Status

2
 Content and changes

0.1 16.09.2014 Draft First version

0.2 19.09.2014 Draft Revised

1.0 30.09.2014 Submitted Final version

Peer Review History3

Version Peer Review Date Reviewed By

1
 Please use a new number for each new version of the deliverable. Use “0.#” for Draft and Peer-Reviewed. “x.#”

for Submitted and Approved”, where x>=1.Add the date when this version was issued and list the items that have
been added or changed.
2
 A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted and Approved.

3Only for deliverables that have to be peer-reviewed

FP7-610746 D3.2 Version 1.0

Page 3 of 45

Table of contents

DOCUMENT HISTORY ... 2

TABLE OF CONTENTS ... 3

ABBREVIATIONS AND ACRONYMS .. 4

EXECUTIVE SUMMARY .. 6

1 INTRODUCTION .. 7

1.1 PURPOSE OF THE DOCUMENT ... 7

1.2 METHODOLOGY... 7

1.3 INTENDED AUDIENCE AND READING SUGGESTIONS ... 8

1.4 WRITING CONVENTIONS.. 8

1.5 OVERVIEW OF THE DOCUMENT .. 8

2 ONTOLOGY .. 9

2.1 OVERVIEW OF UCS ... 9

2.2 ONTOLOGY ENTITIES AND RELATIONS .. 10

2.2.1 PRIMARY SCREENING PHASE ... 12

2.2.2 BEHAVIOURAL ASSESSMENT PHASE.. 18

2.2.3 PERSONALISED GUIDANCE PHASE ... 23

2.2.4 OBJECT PROPERTIES .. 25

2.3 TIME SERIES JSON FORMAT .. 30

2.4 ONTOLOGY FOR COMMUNICATION INTERFACE DESIGN .. 31

2.5 ONTOLOGY FOR STORAGE MODEL DESIGN ... 34

3 GOAL EXPRESSION LANGUAGE AND SOFTWARE TOOL 36

3.1 GOAL DEFINITION ... 36

3.1.1 SELECT STATEMENT .. 36

3.1.2 GOAL STATEMENT ... 37

3.2 EXAMPLE GOALS AND SOFTWARE TOOL OUTPUT ... 38

3.2.1 GOAL EXAMPLE 1 ... 38

3.2.2 GOAL EXAMPLE 2 ... 39

3.2.3 GOAL EXAMPLE 3 ... 40

4 CONCLUSIONS... 41

REFERENCES ... 42

A. ANNEX A – SOFTWARE TOOL FOR GOAL EXPRESSION................................ 43

FP7-610746 D3.2 Version 1.0

Page 4 of 45

Abbreviations and Acronyms

List of Abbreviations and Acronyms

DOW Description of Work

WP Work Package

UC Use Case

UI User Interface

BNF Backus Normal Form - BNF is a notation technique for context free grammars

Nomenclature

(Health) Professional: A doctor, a dietician, a therapist or a lifestyle coach.

Adult: A young adult person that uses SPLENDID as a lifestyle product.

Student: An adolescent that participates in the primary/secondary screening processes and

the guidance Events.

Subject: A Student or Adult user.

Assistant: A user that helps the Health Professional to run some types of Events.

Mandometer
©: A personal scale registering weight-loss data from a plate, used to take

measurements of the meals.

Activity Meter: A portable device that logs the user’s physical activity through the day.

Chewing Sensor: A wearable sensor that is used to identify snacking Events. Also it can be

used as alternative of the Mandometer© scale to record meals.

Smartphone: A mobile phone with an operating system and internet capabilities.

Event: Refers to all type of screening and guidance processes featured by SPLENDID. An

Event refers to a single Student/Adult. In our context these types of Events may last several

days.

Primary Screening Event (PSE): This is the type of Event that refers to the primary

screening process at schools.

Primary Screening Stage (PSS): Refers to the phase of collecting data of Primary

Screening Events from a school population during a period of time (typically some days).

Behavioural Assessment Event (BAE): This is the type of Event that refers to the

secondary screening process for the Students and the behavioural assessment process for the

Adults.

Personalized Guidance Event (PGE): This is the type of Event that refers to the

personalized guidance process for the Students and the Adults.

Primary Screening Application: A Smartphone Application for the Primary

Screening Events.

Smartphone Application: An application for the Behavioural Assessment Events and

the Personalized Guidance Events used by the Students and the Adults.

FP7-610746 D3.2 Version 1.0

Page 5 of 45

Mobile Application: The interface of the SPLENDID system that is accessed through the

Smartphone. This encompasses the Primary Screening Application and the Smartphone
Application.

Web Interface: An interface accessed through a web browser. It is used for the management

of the SPLENDID system by the Health Professionals, as well as the Adults or the

Students, mainly during the Personalized Guidance Events.

FP7-610746 D3.2 Version 1.0

Page 6 of 45

Executive Summary

This deliverable documents the initial outcomes of Task 3.2 of the SPLENDID project

(entitled “Goal semantics expression and monitoring”). More specifically, it focuses on i)

formally expressing the entities involved in the various phases of SPLENDID operation via a

prototype ontology for the eating and activity behaviour domain ii) defining a formal

language for expressing goals to be used during Personalised Guidance Events (cf deliverable

D1.1 and D1.2 for details) and iii) documenting the use of a prototype software tool for

parsing and validating goals expressed in the goal language.

AUTH developed the SPLENDID ontology based on the Use Case analysis of Deliverable

D1.2 (“Use Cases Specifications”) and the Functional Requirements of Deliverable D1.1

(“User Requirements”). These deliverables provided the necessary groundwork for the

identification of the ontology classes, their properties and the relations between them. Each

class and property of the ontology is thoroughly documented, both in this document as well as

via built-in annotations in the prototype. In addition, this document also provides detailed

examples on how to define data/storage models and communication interfaces based on the

ontology.

The prescription of personalised goals can be achieved using the ontology in combination

with a formal language for goal expression. AUTH has developed a UI tool for evaluation and

parsing of the prescribed goals; documentation and usage examples are presented in this

document.

The outcomes of this deliverable will be used in subsequent phases of SPLENDID

development, such as i) the use of the ontology as a reference for designing the SPLENDID

data model and databases ii) the use of the ontology for defining the communication

interfaces between the different local and web service components iii) the use of the formal

goal language for storing goals expressed by health professionals in the SPLENDID database

and iv) the use of the UI tool for defining a range of different goal types during SPLENDID

development.

The prototypes presented in this document allow the development of the goal monitoring

modules, to be presented in deliverable D3.3 (“Preliminary version of risk assessment and

goal monitoring”), which will assess the proximity of an individual subject to goals expressed

in the formal goal language.

FP7-610746 D3.2 Version 1.0

Page 7 of 45

1 Introduction

1.1 Purpose of the document

Deliverable D3.2 entitled “Formal Ontology for the Eating and Activity Behaviour Domain”

is the first deliverable of the Work Package 3 (WP3 - Information Processing and Inference),

presenting the work done until Month 12 of the project in the context of Task 3.2 (“Goal

semantics expression and monitoring”). The present deliverable is based on Deliverable D1.1

(“User Requirements”) and mostly, on Deliverable D1.2 (“User Cases Specifications”).

The scope of this document is:

 The development of a formal ontology for the eating and activity behaviour domain.

 The definition of a formal language that will allow SPLENDID developers to express,

store and interpret different personalised goals prescribed by the Health Professionals

via the SPLENDID professional web application.

 The development of a User Interface (UI) that will allow definition and validation of

specific eating and activity goals, expressed in this formal language.

1.2 Methodology

The first goal of this deliverable was the development of the ontology. The Use Cases (UCs)

of D1.2 were studied to ensure complete coverage of the UCs by the classes of the ontology

and their underlying relations. The ontology was designed with three objectives:

 To allow the description of the Subject’s behaviour in the eating and activity

domains.

 To specify the data model. The ontology clearly presents all relevant entities and their

relations and dictates the necessary entities for the design of the data/storage model.

 To enable definition of behavioural goals, in combination with a formal goal

expression language.

D1.1 and D1.2 identified three phases of the SPLENDID system. These are the Primary

Screening phase, the Behavioural Assessment phase, and the Personalised Guidance phase.

The UCs of each phase were further categorized and analysed at the application level, leading

to UCs for the Web Interface and UCs for the Mobile Application. Following separation

of the UCs into phases, the ontology classes and properties were first defined for each phase

separately and were then combined to build the final ontology.

Next, based on the UCs of the Personalised Guidance phase and the constructed ontology, a

formal language for the behavioural goal definition is given. The language is based on the

ontology classes, their data properties and object properties. A variety of logical and

comparison operators as well as the usage of special functions were introduced in the

language to allow the definition of arbitrary goals and provide the flexibility for the definition

of personalised behavioural goals tailored for each Subject.

Finally, a software tool was created that allows the manipulation and validation of the

personalized goals. This tool allows goal parsing described using the introduced goal

language, evaluates the syntax, and produces the parse tree.

FP7-610746 D3.2 Version 1.0

Page 8 of 45

1.3 Intended audience and reading suggestions

The SPLENDID ontology, the language for goal prescription, and the software tool will be

combined with the modules of D3.3 (“Preliminary version of risk assessment and goal

monitoring module”) into D3.4 (“Decision Support System”) of Work Package 3.

Furthermore, the development teams of SPLENDID can rely on the ontology for the

definition of the storage model and the communication interfaces. To this end, examples for

using the ontology for creating a relational database schema and defining JSON objects [1]

for communication interface are presented in the document.

The reader can read the sections sequentially, or can use the document as a reference for each

individual class/property of the ontology.

1.4 Writing Conventions

The notions that are presented in the Nomenclature are given with Courier New in the

document. Text that illustrates code and programs’ verbatim input/output is given with

Courier New as well. Ontology classes, data properties, object properties, and database table

names are italicized.

1.5 Overview of the document

Section 2 provides an overview of the UCs and documents in detail the ontology classes and

their properties for each phase. In addition, examples for using the ontology for the design of

the communication interface and the storage model are given. Section 3 describes the

language for the definition of personalised goals and demonstrates the usage of the goal

expression language tool whereas Section 4 presents the conclusions of the document. Finally,

Annex A provides the formal goal language in BNF form and the graph of the implied

automaton.

FP7-610746 D3.2 Version 1.0

Page 9 of 45

2 Ontology

This section presents the ontology for eating and activity domain. It is organised as follows:

Section 2.1 presents an overview of the UCs and Section 2.2 presents an overview the

ontology entities and relations identified from the UCs. Then, Sections 2.4 and 2.5 present

examples on exploiting the ontology for the communication interface and storage model

design.

2.1 Overview of UCs

Two categories of UCs were identified in D1.2 (“Use Cases Specifications”): the Web

Interface UCs and, the Mobile Application UCs.

According to these UCs, the Health Professionals are the primary users of the Web

Interface. Through the Web Interface they are able to:

 Register and manage Student/Adult and Assistant user accounts.

 Create and/or manage Personalised Screening Stages (PSS), Primary Screening

Events (PSE), Behavioural Assessment Events (BAE), and Personalised

Guidance Events (PGE).

 Assign Student/Adult and Assistant users to the Events.

 Give permissions to other Health Professionals for the Events they own.

 View and export the data and the extracted features collected from the sensors as a

part of an Event.

 View the automatically risk and the risk explanation assigned by the system for the

Subjects participating in a PSE or a BAE. The Health Professionals are able to

finalise the risk by confirming or modifying the automatic risk.

 Prescribe behavioural goals for Subjects participating in a PGE. Furthermore, the

Health Professionals are able to view the progress of the Student/Adult

relatively to the goals.

 Assign appointments for the Subjects participating in a PSE or a BAE.

The Student/Adults participating in a PGE may be provided limited access to the Web

Interface. The provided information via the Web Interface is a subset of the

Professional’s web application and is limited in viewing part of the collected data, the

prescribed goals and their improvement.

The Mobile Application UCs describe the provided functionality to the Student/Adult user

via the Smartphone Applications. The UCs describe functionalities for:

 Recording meal using the Mandometer©
scale and/or the Chewing sensor. The

recorded meals can be part of a PSE, a BAE or a PGE.

 Recording the physical activity of the Student/Adult using the Activity Sensor

during BAE and PGE.

 Answer a variety of questionnaires. The questionnaire can be related to an Event and

be answered in a daily basis (e.g. end-of-day questionnaire, sleep/wake-up time

questionnaires), during a registered meal or after a detected snacking event. During the

PGE, the Student/Adult receives additional end-of-day reports which present

summarized information with respect to the behavioural goals.

FP7-610746 D3.2 Version 1.0

Page 10 of 45

 The Student/Adult users participating in a PGE are able to view the prescribed goals

and the overall proximity to them and receive personalised guidance via the Mobile

Application.

The UCs also describe functionalities for the Professional and Assistant users that is

provided through the Mobile Application. However, this is fairly limited and related to data

extraction (by the Professional) and PSE preparation (by the Assistant).

2.2 Ontology Entities and Relations

Ontologies provide a formal way to represent knowledge and the goal of the SPLENDID

domain-specific ontology is to formally describe the entities identified in the SPLENDID

system, their attributes and relations between them. The ontology must accurately represent

the data model of the system and describe the eating and activity behaviour domain which

will allow the formal definition of personalised behavioural goals.

Common components of the ontologies are:

 Classes: Classes are used to classify individuals. Classes represent concepts, type of

objects or things in an abstract way.

 Subclasses: Classes that can be subsumed by other class. The parent class inherits its

properties to the children classes. Classes and subclasses define the class hierarchy of

the ontology.

 Individuals: Instances of the classes that may refer to specific objects or concepts.

Although the designed ontology provides the means for classifying individuals, class

instances were not included in the ontology.

 Attributes or data properties: Properties and parameters of the classes and individuals.

 Relations or object properties: Describe the relations between the classes.

Figure 1 displays the identified ontology hierarchy; the classes and their subclasses, where

available. Next, Sections 2.2.1, 2.2.2 and 2.2.3 and describe in depth the classes, their data

and object properties for Primary Screening, Behavioural Assessment and Personalised

Guidance phase respectively.

FP7-610746 D3.2 Version 1.0

Page 11 of 45

Figure 1 Overview of the ontology’s class hierarchy.

FP7-610746 D3.2 Version 1.0

Page 12 of 45

2.2.1 Primary Screening Phase

Figure 2 Ontology classes and their relations for Primary Screening Phase. Each property is identified by

a colour/line type combination and is only mentioned once.

Figure 2 displays the classes and the object properties for the classes identified from the UCs

of the Primary Screening Phase. Table 1 displays the classes, the classes’ description and

their data properties. Due to the overlap of the object properties among the phases, they are

described all together in Section 2.2.4.

Table 1 Primary Screening Phase Classes and Data Properties

Class Name Class Description Data Properties

User The users of the system.

Three types of user are

defined as subclasses:

Assistant, Professional,

and Subject.

 userUsername: The username

of the user credentials.

 userPassword: The password

of the user credentials.

 description: Free text

description added by

Professionals for

Assistant and Subject users.

has subclass

hasFoodStructure

hasQuestion

a

hasQuestionnaire hasAnswersForQuestionnaire

hasGivenPermission

hasMeal

hasPrimaryScreeningEventStage

hasAssistant

hasPermission

hasRiskFinalisedBy

hasProfessional

hasQuestionnaireAnswers

hasCreatorProfessional

hasSubject

has subclass

FP7-610746 D3.2 Version 1.0

Page 13 of 45

Assistant Class for the Assistant

users.
 assistantID: Unique identifier

for Assistant users.

 userContactDetails: Contact

details.

 userEmail: Email address.

 userFirstName: First name.

 userLastName: Last name.

Professional Class for the Professional

users.
 professionalID: Unique

identifier for Professional

users.

 userContactDetails: Contact

details.

 userEmail: Email address.

 userFirstName: First name.

 userLastName: Last name.

Subject Class for the Student/Adult

users. They are described

using the same class since

the system’s functionality (as

described in UCs) is almost

the same for the Students

and the Adults with minor

changes. Data property

subjectType is used to

discrete the type.

The Student/Adult storage

entries must be anonymised

in SPLENDID system,

hence, no personal

identification information

was added as data property.

 subjectID: Unique identifier

for Subject users.

 subjectBirthYear: Birth year in

order to calculate the

Subject’s age. Only the year

of the birth date may be stored

in the system, since the exact

birth date can be considered as

personal identification

information.

 subjectGender: Subject’s

gender.

 subjectHandedness:

Handedness of the Subject

(left/right-handed).

 subjectHeight: Subject’s

height.

 subjectWeight: Subject’s

weight.

 subjectType: Whether the

Subject is a Student or

Adult user.

 riskEatingDisorder: Subject’s

risk on developing eating

disorders.

 riskObesity: Subject’s risk on

developing obesity.

Questionnaire This class was introduced to

cover the need of

 questionnaireType: The type

of the questionnaire, for

example:

FP7-610746 D3.2 Version 1.0

Page 14 of 45

questionnaires as indicated

by a number of UCs. The

questionnaires can be related

to:

 The questions related

with a meal.

 The general questions

asked to the students

during PSE.

 Wake-up/end-of-day

questionnaires and popup

questionnaires during

BAE and PGE.

o BAE_ActivityDetectionPopup

o BAE_Meal,

o BAE_SnackDetectionPopup,

o PGE_ActivityDetectionPopup

o PGE_Meal,

o PGE_SnackDetectionPopup,

o PSE_AfterMeal,

o PSE_BeforeMeal,

o PSE_Meal

Question The class that represents the

questions of the

questionnaires. It was

separated from questionnaire

to allow better description of

the question types via the

definition of subclasses.

 questionType: The type of the

question. For example:

o Multiple choises,

o Free text,

o Yes/no questions.

QuestionYesNo Subclass for the yes/no

questions.

QuestionChoices Subclass for the multiple

choices questions.
 answerChoices: The available

answers to choose from.

QuestionFreeText Subclass for the questions

with free text answers.

QuestionnaireAnswers The answers to a

questionnaire. The class was

introduced to indicate that

the storage of the answers is

decoupled from the

questions.

 answers: The answers to the

questionnaire. A JSON object

may be used for the storage of

the answers.

 answersTimestamp: The time

the questionnaire was

answered since a questionnaire

may be answered multiple

times during an Event.

Meal Class that covers all types of

meals (registered/ detected,

planned/ snacking). The class

contains the meal related

data and indicators.

 averageBiteFrequency:

Average bite frequency

(bites/sec).

 averageChewingRate: Average

chewing rate (chews/sec).

 averageFoodIntake: Average

food intake (g/sec).

 biteSizeAcceleration: Bite size

FP7-610746 D3.2 Version 1.0

Page 15 of 45

acceleration (g/bite
2
).

 biteSizeRate: Bite size rate

(g/bite).

 chewingRateAcceleration:

Chewing rate acceleration

(chews/sec
2
).

 estimatedKcal: Estimated total

caloric intake (Kcal).

 hasChewingSensor: Boolean

value; true if Chewing Sensor

was used for the meal

recording.

 hasMandometerSensor:

Boolean value; true if

Mandometer
©

scale was used

for the meal recording.

 initialBiteSize: Initial bite size

(g).

 initialChewingRate: Initial

chewing rate (chews/sec).

 initialFoodWeight: The initial

food weight of the meal.

 isConfirmedSnack: Boolean

value; true if the meal at hand

is a snack confirmed by the

Student/Adult.

 isRegisteredMeal: Boolean

value; true if the meal was

registered by the Subject.

 mealCurveAlpha: Food intake

rate acceleration - parameter

"a" of the meal curve (g/sec
2
).

 mealCurveBeta: Initial food

intake rate - parameter "b" of

the meal curve (g/sec).

 mealDetectionProbability: If

the meal was automatically

detected, the value indicates

the probability it was detected

correctly.

 mealDuration: Meal duration

(sec).

 mealStartTime: Timestamp for

the meal start time.

 mealEndTime: Timestamp for

the meal end time.

 mealType: The type of the

meal. For example, the meal

FP7-610746 D3.2 Version 1.0

Page 16 of 45

could be between: "Breakfast",

"Dinner", "Lunch" and

"Snack".

 numberChewsBeforeSwallow:

Average number of chews

before swallowing during a

meal.

 numberOfFoodAdditions:

Number of food additions

during meal.

 pauseLengthBeforeEating: The

pause in seconds before eating.

 satietyFoodIntakeRatio:

Satiety to the total food intake

(satiety/g).

 totalFoodIntake: Total food

intake (g).

 varianceOfBiteSize: Bite size

standard deviation (g).

 weightOfLeftOvers: The

weight of the food left on the

plate when meal is over (g).

FoodStructure

The food structure of a meal.

Because different food

structure properties may be

required depending on the

food type three subclasses

were introduced for solid,

semi-solid and liquid food.

 foodType: The type of the

food, e.g. solid, liquid, semi-

solid.

FoodStructureLiquid To define food structure

properties when the food is

identified as solid.

 liquidType: Type of the liquid,

such as:

o Carbonated

o Neutral

o Other

FoodStructureSemiSolid To define food structure

properties when the food is

identified as semi solid.

FoodStructureSolid To define food structure

properties when the food is

identified as liquid.

 isChewy: Boolean value; true

if the food is chewy.

 isCrispy: Boolean value; true

if the food is crispy.

 isWet: Boolean value; true if

the food is wet.

FP7-610746 D3.2 Version 1.0

Page 17 of 45

PrimaryScreeningEvent The Primary Screening

Event (PSE) for a Student.

 automaticRiskCategory: The

risk category calculated

automatically by the system.

For example, the risk could fall

into the following categories:

“Eating Disorders Risk”,

“Obesity Risk” and, “Low

Risk”.

 automaticRiskExplanation: A

description on how the risk

was calculated by the system.

 finalisedRiskCategory: The

finalised risk category for the

Event assigned by the

Professional and shall

receive the same values with

the automaticRiskCategory

property.

 finalisedRiskComments:

Comments added by the

Professional when the risk

of the Event is finalised.

 riskEatingDisorder: The

automatically calculated value

for the eating disorders risk.

 riskObesity: The automatically

calculated value for the obesity

risk.

 isRiskCategoryFinalised:

Boolean value; true if the risk

has been finalised by a

Professional.

PrimaryScreeningStage The class that groups PSE of

the same primary screening

process (e.g. same school

and same age etc.). PSE of

the same type are grouped in

a Primary Screening

Stage (PSS).

 dateStart: The start date of the

PSS.

 dateEnd: The end date of PSS.

 description: A free text

description for the PSS added

by the Professional.

 location: The location PSS

takes place.

 plateWeight: Since the weight

of the plate may not be

measured during the PSE meal

recordings, the Professional

shall be able to denote the

weight of the plates of the

school cafeteria directly into

FP7-610746 D3.2 Version 1.0

Page 18 of 45

SPLENDID system.

TrainingMeal

The training meals during

PSS that help students

familiarise with the primary

screening process. These

meals are anonymous and

there is no need to link them

with the Students.

 subjectGender: The Student’s

gender.

 foodImageUri: If available,

this property is the URI of the

photo of the Student’s lunch.

Permission Class to describe the

permissions the owner

Professional of an Event

may grant to other

Professionals.

 permissionLevel: A predefined

permission level for the Event.

For example:

o Full

o Read Only

2.2.2 Behavioural Assessment Phase

Figure 3 Ontology classes and their relations for Behavioural Assessment Phase. For clearanceness the

object properties labels related to Timeseries class are omitted from the diagram (see Section 2.2.4 for the

description of the object properties).

hasQuestionnaireAnswers

hasQuestionnaire

hasFoodStructure

hasQuestion
a

hasCreatorProfessional

hasGivenPermission

hasSubject

hasGlobalIndicator hasAnswersForQuestionnaire

hasLocalIndicator

hasDay

hasWorkSchedule

has subclass

hasFinalisedRiskBy
hasAppointment

FP7-610746 D3.2 Version 1.0

Page 19 of 45

Figure 3 shows the classes and the class relations for the classes related to Behavioural

Assessment phase and Table 2 displays the identified classes along with a description and

their data properties.

Table 2 Behavioural Assessment Phase Classes and Data Properties

Class Name Class Description Data Properties

Professional

Same as in Table 1

Subject

Questionnaire

Question

QuestionnaireAnswers

Meal

FoodStructure

Permission

BehaviouralAssessmentEvent The Behavioural

Assessment Event (BAE)

for a Student/Adult. A BAE

refers to a single

Student/Adult and

typically lasts for two

weeks.

 automaticRiskCategory: The

risk category automatically

calculated by the system. For

example, the risk could fall

into the following categories:

“Eating Disorders Risk”,

“Obesity Risk” and, “Low

Risk”.

 automaticRiskExplanation: A

description on how the risk

was calculated by the system.

 dateStart: The start date of

the BAE.

 dateEnd: The end date of BAE.

 description: A free text

description for the BAE added

by the Professional.

 finalisedRiskCategory: The

finalised risk category for the

Event assigned by the

Professional. The range of

this value is the same as the

one used for

automaticRiskCategory

property.

 finalisedRiskComments:

FP7-610746 D3.2 Version 1.0

Page 20 of 45

Comments added by the

Professional when the

Event risk is finalised.

 riskEatingDisorder: The

automatically calculated value

for the eating disorders risk.

 riskObesity: The

automatically calculated value

for the obesity risk.

 isRiskCategoryFinalised:

Boolean value; true if the risk

has been finalised by a

Professional.

Day

Class that represents a day

of a BAE or a PGE. This class

was introduced to allow

flexibility in defining goals

on a daily basis (see goal

expression language of

Section 3).

 isWorkingDay: Boolean

value; true if it is a working

day. Different types of goal

may apply if the day is a

working day or a day off.

 date: The date (i.e. the date

when the data were collected)

for a BAE or PGE.

Appointment The appointments are set by

the Professionals for the

Subjects during a BAE or

PGE.

 datetime: Date and time of the

appointment.

 description: A free text

description field.

 location: The location the

appointment will take place.

Timeseries Wrapper class for time

series data of the system.
 jsonUri: The URI of the

JSON object that stores the

time series. Section 2.3

proposes a JSON format for

time series data.

GlobalIndicator Global indicators extracted

over a specified period of

time, such as a day.

Depending on the

implementation, the global

indicators could be

calculated on-the-fly (e.g.

for different requested

periods) and not be stored in

the database. Furthermore,

some of the indicators may

be needed only for

presentation purposes and

 averageIntakeRate: Average

intake rate across registered

meals (g/sec).

 compliaceActivitySensor:

User compliance level for
Activity Sensor
(categorical and/or

probability).

 complianceChewingSensor:

User compliance level for

chewing sensor (categorical

and/or probability).

 complianceMandometer: User

FP7-610746 D3.2 Version 1.0

Page 21 of 45

not be used in goal

definition and/or automatic

risk assignment.

compliance level for

Mandometer
© (categorical

and/or probability).

 startTimestamp: Start time of

the period global indicators

are calculated for.

 endTimestamp: End time of

the period global indicators

are calculated for.

 estimatedDailyEnergyExpendi

ture: Estimated daily energy

expenditure during the period

(average MET).

 estimatedTotalEnergyExpendi

ture: Estimated total energy

expenditure during the period

(average MET).

 exerciseSessionDuration:

Exercise session duration

(minutes).

 numberConfirmedSnackingEv

ents: Number of confirmed

snacking events for the

requested period.

 numberDetectedSnackingEve

nts: Number of detected

snacking events by the

sensors for the requested

period.

 numberExerciseSessions:

Number of exercises sessions

for the requested period.

 numberMeals: Number of

meals for the requested

period.

 questionsAnsweredPercentag

e: Percentage of the questions

answered during the specified

period.

LocalIndicator

Class for the local indicators

collected during BAE and

PGE. The subclasses of

LocalIndicator represent the

different types of data that

may be collected/extracted

from the Chewing and the

Activity Sensor.

 startTimestamp: Start time of

the period local indicators

were collected.

 endTimestamp: End time of

the period local indicators

were collected.

FP7-610746 D3.2 Version 1.0

Page 22 of 45

UsageChewingSensorData Class containing time series

for the usage (or the

probability of usage) of the

Chewing Sensor by the

Subject.

ActivityTypeData Class containing time series

for the Subject’s

(calculated assumption of)

activity type.

SnackingData Class containing time series

for the probability a

snacking event was detected

by the sensors.

EnergyExpenditureData Class containing time series

for the estimated energy

expenditure.

UsageActivitySensorData Class containing time series

for the usage (or the

probability of usage) of the

Activity Sensor by the

Subject.

ActivityLevelData Class containing time series

for the activity level

extracted by the Activity

Sensor.

WorkSchedule The working schedule

(working days and days off

for the Subject).

The schedule may be

defined using week days

(e.g. Monday is workday,

Sunday is day off) or by

specific dates (for the

subjects where the above

format cannot be used).

 scheduleDays: Data property

to indicate that the work

schedule can be defined using

days (e.g. Monday is working

day, Sunday is day off, etc.).

 scheduleDates: Data property

to indicate that the work

schedule can be defined using

dates directly (e.g. 23-02-

2015 is working day, 24-02-

2015 is day off, etc.).

WorkScheduleDefault Subclass of WorkSchedule;

indicate that a default work

schedule shall be defined in

the system (e.g. Monday to

Friday are working days,

Saturday and Sunday are

FP7-610746 D3.2 Version 1.0

Page 23 of 45

days off).

2.2.3 Personalised Guidance Phase

Figure 4 Ontology classes and their relations for Personalised Guidance Phase. For clearanceness the

object properties labels of Timeseries class are omitted (see Section 2.2.4 for the description of the object

properties).

Figure 4 shows the classes and the class relations for the classes related to Personalised

Guidance phase and Table 3 displays the classes along with a description and their data

properties.

Table 3 Personalised Guidance Phase Classes and Data Properties

Class Name Class Description Data Properties

Professional

Same as in Table 1

Subject

Questionnaire

Question

QuestionnaireAnswers

hasGivenPermission

hasCreatorProfessional

hasWorkSchedule

hasSubject

hasGlobalIndicator

hasQuestionnaireAnswers

hasAnswersForQuestionnaire

hasQuestion

a

hasFoodStructure

hasDay hasGoal

hasAppointment

hasQuestionnaire

hasLocalIndicator

FP7-610746 D3.2 Version 1.0

Page 24 of 45

Meal

FoodStructure

Permission

Day

Same as in Table 2

Appointment

Timeseries

GlobalIndicator

LocalIndicator

UsageChewingSensorData

ActivityTypeData

SnackingData

EnergyExpenditureData

UsageActivitySensorData

ActivityLevelData

WorkSchedule

WorkScheduleDefault

PersonalisedGuidanceEvent The Personalised

Guidance Event (PGE) for

a Student/Adult. A PGE

refers to a single

Student/Adult and

typically lasts for two

weeks.

 dateStart: The start date of the

PGE.

 dateEnd: The end date of PGE.

 description: A free text

description for the PGE added

by the Professional.

Goal The behavioural goals

assigned to PGE by the

Professionals.

 dateStart: Start date of the

period the Goal is

evaluated/active.

 dateEnd: Start date of the

period the Goal is

evaluated/active.

 goalLogicalExpression: The

logical expression that defines

the goal. Section 3 describes

the formal structure of the goal

FP7-610746 D3.2 Version 1.0

Page 25 of 45

logical expressions.

 proximityToGoal: Numerical

or categorical value for the

proximity to goal satisfaction.

 proximityToGoalExplanation:

If the goal is more complex,

the explanation describes the

contribution of each part for

the proximity evaluation.

2.2.4 Object Properties

This section presents the object properties between the Ontology classes. The object

properties define how individuals are related to other individuals in the form “DomainObject

hasRelation RangeObject”. Table 4 displays the object properties that are defined in the

ontology.

Table 4 Object Properties

Object Property Domain/Range/Description

hasActivityLevelHistogram

Domain: GlobalIndicator

Range: Timeseries

Description: Histograms may be used, for presentation

purposes at the Web Interface, to display the activity

levels through the requested period.

hasActivityLevelTimeseries Domain: ActivityLevelData

Range: Timeseries

Description: Estimated physical activity level

timeseries (categorical value).

hasActivitySensorStartEndTimes Domain: GlobalIndicator

Range: Timeseries

Description: Global indicator for displaying the sensor

start and end of usage times.

hasActivityTypeTimeseries Domain: ActivityTypeData

Range: Timeseries

Description: Estimation of activity type. The timeseries

describe the activity type over time or activity

type/probability pairs.

hasAggregatedPhysicalActivity Domain: GlobalIndicator

FP7-610746 D3.2 Version 1.0

Page 26 of 45

Range: Timeseries

Description: Global indicator for displaying aggregated

physical activity graphs (e.g. aggregated per 5 minute

spans).

hasAnswersForQuestionnaire Domain: QuestionnaireAnswers

Range: Questionnaire

Description: The answers to the Questionnaires are

stored separately. This relation indicates to which

Questionnaire the answers for are.

hasAppointment Domain: PersonalisedGuidanceEvent,

BehaviouralAssessmentEvent

Range: Appointment

Description: Relation to indicate that Appointment may

be assigned as a part of a BAE or a PGE.

hasAssistant Domain: PrimaryScreeningStage

Range: Assistant

Description: Relation to indicate that one or more

Assistants may be assigned to a PSS.

hasChewData Domain: Meal

Range: Timeseries

Description: Chew data timeseries that may be recorded

as a part of a meal using the Chewing Sensor.

hasChewingSensorStartEndTimes Domain: GlobalIndicator

Range: Timeseries

Description: Global indicator displaying when the

Subject started and stopped using the chewing sensors

for the requested time period.

hasCreatorProfessional Domain: Subject, BehaviouralAssessmentEvent,

Appointment, Assistant, Permission,

PersonalisedGuidanceEvent, PrimaryScreeningEvent

Range: Professional

Description: Relation to indicate the creator (and, thus,

the owner) of an Event, user, permission entry or

appointment.

hasDay Domain: BehaviouralAssessmentEvent,

PersonalisedGuidanceEvent

FP7-610746 D3.2 Version 1.0

Page 27 of 45

Range: Day

Description: Relation to allow the description of the

data and the calculated indicators in a daily basis.

hasEatingPauses Domain: Meal

Range: Timeseries

Description: Time series data containing the pauses

during eating (e.g. the timestamp of the pause and its

durations).

hasEnergyExpenditureTimeseries Domain: EnergyExpenditureData

Range: Timeseries

Description: Time series data containing the estimated

energy expenditure.

hasExerciseIntensity Domain: GlobalIndicator

Range: Timeseries

Description: Global indicator displaying the intensity in

each exercise session.

hasFoodAddition Domain: Meal

Range: Timeseries

Description: Time series data collected/calculated

during the meal. This time series may indicate the

weight of the food addition and the probability the food

addition was correctly identified.

hasFoodStructure Domain: Meal

Range: FoodStructure

Description: Relation to indicate the food structure

identified for each meal.

hasPermissionFor Domain: Permission

Range: Professional

Description: Relation to indicate that a Professional

has specific permission level to a PSS, PSE, BAE or PGE.

hasGlobalIndicator Domain: Day

Range: GlobalIndicator

Description: Relation to indicate the global indicators

may be collected/calculated during a day of a BAE or a

PGE.

FP7-610746 D3.2 Version 1.0

Page 28 of 45

hasGoal Domain: PersonalisedGuidanceEvent

Range: Goal

Description: Relation to indicate the personalised

behavioural goals prescribed by the Professional for a

PGE.

hasLocalIndicator Domain: Day

Range: LocalIndicator

Description: Relation to indicate for the local indicators

(time series data) collected/extracted during a day of a

BAE or a PGE.

hasMeal Domain: Day, PrimaryScreeningEvent, TrainingMeal

Range: Meal

Description: Relation for the meal recorded as a part of

PSE, BAE, PGE or as training meals during a PSS.

hasMealStartTimes Domain: GlobalIndicator

Range: Timeseries

Description: Global indicator displaying time series

data for the meal start times of the requested period.

hasPermission Domain: PrimaryScreeningStage,

PersonalisedGuidanceEvent,

BehaviouralAssessmentEvent, PrimaryScreeningEvent

Range: Permission

Description: Relation to indicate that permissions to

other Professional may be assigned for a PSS, PSE, BAE

or PGE by the creator (owner) Professional.

hasPrimaryScreeningStage Domain: TrainingMeal, PrimaryScreeningEvent.

Range: PrimaryScreeningStage.

Description: Indicates that the domain classes belong to

a PSS. The main goal of a PrimaryScreeningStage is to

group the PGEs of the same screening phase (e.g. same

school and age). Additionally, the training meals, since

they are anonymous, are related directly to a

PrimaryScreeningStage.

hasProcessedMandometerData Domain: Meal

Range: Timeseries

Description: Time series data for the grams over time

of the raw food intake curve after processing the signal

FP7-610746 D3.2 Version 1.0

Page 29 of 45

recorded by the Mandometer© scale.

hasQuestion Domain: Questionnaire

Range: Question

Description: Relations to indicate which questions

belong to a questionnaire.

hasQuestionnaire Domain: PrimaryScreeningEvent,

PersonalisedGuidanceEvent, Meal,

BehaviouralAssessmentEvent

Range: Questionnaire

Description: Relation to indicate that a specific

questionnaire type is requested to be answered during a

meal, a PSE, a BAE or a PGE.

hasQuestionnaireAnswers Domain: Meal, PersonalisedGuidanceEvent,

BehaviouralAssessmentEvent, PrimaryScreeningEvent

Range: QuestionnaireAnswers

Description: Relation to indicate that a questionnaire

has been answered. The same questionnaire may be

answered many times during an Event.

hasRawMandometerData Domain: Meal

Range: Timeseries

Description: Time series for the grams over time of the

raw food intake curve as recorded by the Mandometer©

scale.

hasRiskFinalisedBy Domain: PrimaryScreeningEvent,

BehaviouralAssessmentEvent

Range: Professional

Description: Relation to indicate the Professional

that finalised the risk category of a PSE or a BAE. The

owner Professional or other Professionals with

appropriate permissions to the Event may finalise the

risk category.

hasSatietyLevel Domain: Meal

Range: Timeseries

Description: Time series containing data for the satiety

level at different times during a meal.

hasSnackingTimeseries Domain: SnackingData

FP7-610746 D3.2 Version 1.0

Page 30 of 45

Range: Timeseries

Description: Local indicator data for the detected

snacking events and/or the probability they were

correctly detected.

hasSubject Domain: Appointment, PersonalisedGuidanceEvent,

PrimaryScreeningEvent, BehaviouralAssessmentEvent

Range: Subject

Description: Relation to indicate that an appointment, a

PSE, a BAE or a PGE refers to a specific Subject.

hasUsageActivitySensorTimeseries Domain: UsageActivitySensorData

Range: Timeseries

Description: Local indicator containing time series data

for the usage (or the probability of usage) of the

Activity Sensor over time.

hasUsageChewingSensorTimeseries Domain: UsageChewingSensorData

Range: Timeseries

Description: Local indicator containing time series data

for the usage (or the probability of usage) of the

Chewing Sensor over time.

hasWorkSchedule Domain: BehaviouralAssessmentEvent,

PersonalisedGuidanceEvent

Range: WorkSchedule

Description: Relation to indicate that the Subject’s

working schedule has been described in the context of a

BAE or a PGE.

2.3 Time series JSON format

Timeseries class was introduced is a generic wrapper class for time series data. Time series

data are not directly used for goal definition or evaluation of the goal proximity, thus, the use

of a generic class simplifies the ontology design without loss of descriptiveness. In this

section, we propose a JSON format for data identified as time series.

First, the JSON format shall define a preamble part for the metadata of the collected time

series. This could include: signal type, sampling frequency, sensors employed, start

timestamp and end timestamp. The next part shall contain the actual time series: the

timestamps and the signal or the extracted values of the indicators. Additionally, some local

indicators may provide additional time series indicating the probability the values were

calculated correctly. Thus, the time_series part of JSON shall contain, at least, the following

values: timestamps, values and, probabilities.

FP7-610746 D3.2 Version 1.0

Page 31 of 45

An example of such JSON file follows:

{

 /* Comments on preamble part

 "type" is set among predefined types

 "sampling_rate" is given in seconds

 "samples" is the number of samples

 "sensors" is an array for the used sensors

 "start_timestamp" is the start time of the recording

 "end_timestamp" is the end time of the recording

 */

 "preamble":

 {

 "type":"ACTIVITY_TYPE",

 "sampling_rate":10,

 "samples":5

 "sensors":["ACTIVITY_SENSOR"],

 "start_timestamp":"2014-11-21 17:05:00",

 "end_timestamp":"2014-11-21 17:05:20"

 },

 /* Comments on timeseries part

 "values" is the array of the recorded/extracted values

 "probabilities" is the (optional) array with additional

 information about the quality of the samples

 */

 "time_series":

 {

 "values":[2, 2, 3, 3, 2],

 "probabilities":[0.85, 0.82, 0.41, 0.43, 0.8]

 }

}

In the example, the preamble part defines that the signal is for activity type, the Activity

Sensor was used for the samples, and the sampling rate was at 10 samples/sec with a total of

5 samples is contained in the JSON. Finally, the start and end time stamps of the recorded

time series are defined as well.

The time_series part first defines an array of timestamps for the recorded samples. Next, an

array of time series values that describe the activity type are given. Finally, in this type of

signal, an array with the probabilities indicating the confidence of the measured values is

given.

2.4 Ontology for Communication Interface Design

The ontology can be used for design of the communication interface. Here, we consider the

use of JSON files for the communication of the different system modules. Using JSON

objects for data transfer has several advantages. It is has a clean syntax that can describe the

data model of most problems efficiently. Since it is not a mark-up language (like XML),

JSON provides high flexibility without the need to define new tags or attributes to represent

the data. To this end, we propose JSON for storing and exchanging data and an example of

using the ontology for defining the format of the JSON files is given.

The data properties and object properties as presented in the ontology can be employed for the

definition of JSON objects for the communication of the systems (e.g. data transfer from the

Mobile Phone to the server, data retrieval from the server, etc.).

FP7-610746 D3.2 Version 1.0

Page 32 of 45

As an example, we will demonstrate how the ontology can be used for the definition of a

JSON file format for meals. First, the data properties of the Meal class are added as variables

of the JSON object, e.g. average bite frequency, average chewing rate, etc. (Table 1).

Then, the object properties of Meal class (Table 4) that indicate the relations with the other

classes can be used to complete the JSON object. JSON file formats are implicitly defined in

the example and are named according to the object properties of the Meal class:

hasMandometerRawData, hasProcessedMandomterData, hasChewData, hasEatingPauses,

hasFoodAddition, hasSatietyLevel, hasQuestionnaireAnswers, and hasFoodStructure.

An example JSON file for a registered meal recorded using Mandometer© and Chewing

Sensor follows:

{

/*

First, the data properties of the

Meal class are directly described.

*/

 "averageBiteFrequency":0.5,

 "averageChewingRate":2.3,

 "averageFoodIntake":18.4,

 "biteSize":37.6,

 "chewingRateAcceleration":23.2,

 "estimateKcal":1640,

 "hasChewingSensor":true,

 "hasMandometerSensor"true,

 "initialBiteSize":24,

 "initialChewingRate":3,

 "initialFoodWeight":434,

 "isConfirmedSnack":false,

 "isRegisteredMeal":true,

 "mealCurveAlpha":0.4,

 "mealCurveBeta":1.2,

 "mealDetectionProbability":null,

 "meaDuration":344,

 "mealStartTime":"2015-02-24 13:05:23",

 "mealEndTime":"2015-02-24 13:10:57",

 "mealType":"LUNCH",

 "numberChewsBeforeSwallow":4.2,

 "numberOfFoodAdditions":0,

 "pauseLengthBeforeEating":10.3,

 "satietyFoodIntakeRatio":0.38,

 "totalFoodIntake":430,

 "varianceOfBiteSize":3.8,

 "weightOfLeftOvers":4,

 /*

 Then, the object properties related to Meal

 class are added and are described using

 Timeseries or other JSON file formats.

 */

 /*

 Mandometer raw data is a time series.

 The Timeseries example of the previous

 section is used.

 */

 "hasMandometerRawData":

 {

 "preamble":

 {

FP7-610746 D3.2 Version 1.0

Page 33 of 45

 "type":"MANDOMETER_RAW",

 "sampling_rate":4,

 "samples":86

 "sensors":["MANDOMETER"],

 "start_timestamp":"2015-02-24 13:05:23",

 "end_timestamp":"2015-02-24 13:10:57"

 },

 "timeseries":

 {

 "values":[434, 420, ...],

 /* instead of null could be undefined */

 "probabilities":null

 }

 },

 "hasProcessedMandomterData": { /* time series JSON object */ }

 "hasChewData": { /* time series JSON object*/ },

 "hasEatingPauses": { /* time series JSON object */ },

 "hasFoodAddition": { /* time series JSON object*/ },

 "hasSatietyLevel": { /* time series JSON object*/ },

 /* An array containing two questionnaire JSON objects*/

 "hasQuestionnaireAnswers":

 [

 {

 "questionnaire_id":11,

 "questionnaire_answers":["YES", "WATER", ...]

 },

 {

 "questionnaire_id":12,

 "questionnaire_answers":["NO", "2", ...]

 }

],

 /* An example JSON object for food structure data*/

 "hasFoodStructure":

 {

 "type":"SOLID",

 "isCrispy":true,

 "isChewy":false,

 "isWet":false

 }

}

In this example, first we used the data properties of the Meal class as direct properties of the

JSON. Then, the object properties indicating the relations with other classes were employed

and the relevant classes were added using other JSON objects.

To this end, we first used the time series format of Section 2.3 to add the time series data of

the meal. Since multiple questionnaires can be requested for a meal (e.g. before meal, after

meal), the hasQuestionnaireAnswers property consists of an array of JSON objects for each of

the answered questionnaire. In the example, the format of the questionnaire JSON object

contains its type (questionnaire_id), and therefore implicitly indicates the questions, and an

array with the answers is stored in the questionnaire_answers property. This example JSON

file format for storing questionnaire answers can be used at other parts of the system too, e.g.

for storing questionnaire answers for a BAE or a PGE.

FP7-610746 D3.2 Version 1.0

Page 34 of 45

Finally, the hasFoodStructure property is defined a JSON object as well. Its properties could

change depending on the type of the food (e.g. if the food structure is identified as solid the

isCrispy, isChewy and isWet property shall be expected in the object structure whereas, if the

food structure was liquid the liquidType property would be expected).

2.5 Ontology for Storage Model Design

The ontology describes the data model and can be used for the design of the system’s storage.

We suppose that a relational database will be used for the data storage. The following steps

can be used for designing a relational database using the ontology:

1. Most of the ontology classes can be added directly as tables of the relational

databases.

2. Classes that can be compactly described with JSON objects can be added directly as

fields (columns) of the previous tables.

3. The classes’ object properties describe the relations between them hence can be used

to define the foreign keys between the database tables.

As an example, we demonstrate the design of a relational database to cover the storage needs

of the Primary Screening phase according to Section 2.2.1 for the Primary Screening phase

ontology classes and data properties, and Section 2.2.4 for the object properties.

First, we add the most important classes as tables: PrimaryScreeningEvent,

PrimaryScreeningStage, Meal, Professional, Assistant, Permission, Subject, TrainingMeal,

QuestionnaireAnswers, Questionnaire, and Question.

Then, we add the classes’ data properties as table fields. The class FoodStructure which may

be described by a JSON object and directly refers to a single meal was added as a field of

Meal table.

Finally, the object properties are used to define the foreign keys of a relational database. For

the object properties that imply many-to-many relation additional cross-reference tables were

used: PrimaryScreeningStage_Assistant, PrimaryScreeningStage_Permission,

PrimaryScreeningStage_Permission, PrimaryScreeningEvent_QuestionnaireAnswers, and

Meal_QuestionnaireAnswers.

Figure 5 displays the resulting database schema. The data properties are the table fields

marked with blue and the foreign keys are the fields marked with red.

Figure 5 Example of database design using the ontology for the Primary Screening phase.

3 Goal Expression Language and Software Tool

During the Personalised Guidance phase, the Professionals must be able to prescribe

personalised goals for the Subjects. This section aims to provide a formal language for the

prescribed personalised goal is and a software tool for parsing such goals.

3.1 Goal Definition

The goals are defined in the following two forms:

 SELECT_SQWRL:: select_sqwrl_statement ::END

GOAL:: goal_statement ::END

 SELECT_SQL:: select_sql_statement ::END

GOAL:: goal_statement ::END

The goal consists of two parts: the select statement and the goal statement. There are two

ways to define the select statement depending on the type of the query; either SQWRL or

SQL which is denoted with SELECT_SQWRL:: and SELECT_SQL:: tags respectively. Then,

the retrieved data are evaluated according to the goal statement (denoted with GOAL:: tag).

Section 3.1.1 describes the form of the select expressions and Section 3.1.2 presents the goal

expressions.

3.1.1 Select statement

The select_sqwrl_statement (surrounded in SELECT_SQWRL:: and ::END tags) is an

expression in SQWRL (Semantic Query-Enhanced Web Rule Language) [2]. SQWRL is a

SWRL-based language for querying OWL ontologies. It provides SQL-like operations to

retrieve knowledge from OWL. We chose SQWRL since it has a simple syntax and intuitive

form that can be easily understandable. Furthermore, the SQWRL expressions can be easily

transformed to other forms (e.g. to SQL expressions).

The returned result set of a SQWRL expression is a two dimensional table containing the

results of the query (similar to the result sets returned from a relational database). For

example, a select_sqwrl_statement to select the global indicators for a Subject with

subjectID 45 for the working days can be:

PersonalisedGuidanceEvent(?pge) ^ hasSubject(?pge, ?subject) ^

hasDay(?pge, ?day) ^ hasGlobalIndicators(?day, ?glo_ind) ^

abox:hasValue(?subject, subjectID, 45) ^

abox:hasValue(?day, isWorkingDay, TRUE) -> sqwrl:select(?glo_ind)

The above expression can be directly used if the ontology is used as the system’s knowledge

base. However, even if the ontology is not used for data storage, SQWRL expressions remain

an ideal way to express the data selection part of a goal in a formal way without concerning

the underlying database implementation.

FP7-610746 D3.2 Version 1.0

Page 37 of 45

If a relational database is used for the data storage and the database schema is defined, then it

may be easier to directly describe the selection statement of the goal using a SQL query. The

goal selection allows the use of SELECT_SQL:: and ::ENDtags for this purpose. Similarly to

the select_sqwrl_statement, the select_sql_statement returns a two dimensional table

when the query is evaluated.

Let a relational database with schema containing the tables PersonalisedGuidanceEvent and

GlobalIndicators. Then, the SQWRL expression of the previous example could be expressed

in SQL as:

Select * FROM

(GlobalIndicators JOIN PersonalisedGuidanceEvent ON

GlobalIndicators.idPersonalisedGuidanceEvent =

PersonalisedGuidanceEvent.id)

WHERE PersonalisedGuidanceEvent.idSubject = 45 AND

GlobalIndicators.isWorkingDay = TRUE

3.1.2 Goal statement

The goal statement describes the goal based on the data columns returned from the select

statement. Goal expressions can be formed using operators. Table 5 shows the relational and

comparison operators. In addition, more complex goals can be defined by combining two or

more expressions and obtain a single relational result using logical operators. Table 6 shows

the available logical operators. The precedence of the expressions can be modified using

parentheses.

Table 5 Relational and comparison operators available for Goal Expression

Operator Description

== Equal to

!= Not Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Table 6 Logical operators available for Goal Expression

Operator Description

NOT Boolean logical operation NOT. It has only one

operand, to its right, and inverts it, producing

false if its operand is true and true if its

operand is false.

FP7-610746 D3.2 Version 1.0

Page 38 of 45

AND Boolean logical operation AND. It has two

operands and results to true if both its

operands are true and false otherwise.

OR Boolean logical operation AND. It has two

operands and results to true if at least one

operand is true and false otherwise.

The expressions can also contain functions. Most commonly, functions shall be used for

manipulating the data retrieved from the goal’s select statement, i.e. they receive their

argument from the columns returned by the select statements. A function expression can

replace the left-hand operand of a relation/comparison operator. For example, functions can

operate on the values of time series data to calculate indicators which can be evaluated in the

goal statements.

Although the exact list of the necessary functions was not known during the writing of this

deliverable, the software tool is able to identify when an expression contains function calls

and parse the function name and its arguments.

3.2 Example Goals and Software Tool Output

This section illustrates goal examples and the output of the UI tool that was designed for

parsing the goal expressions. The UI tool parses the input goal expression, identifies the

selection expression and the goal expression and constructs a parse tree for the goal

expression. Annex A.1 provides the BNF definition and lexical analyser source code of the UI

tool that was developed using Bison [3] as parser generator and Flex [4] as lexical analyser.

At this point it should be noticed that Bison gives provides us the capability to add code that

evaluates the goal statements as the goal statement is parsed. In the final version of the goal

assignment module the goal proximity of a Subject will be assigned by an updated version of

the herein presented tool.

3.2.1 Goal Example 1

Description:

Request the lunch meals of Subject with identifier 45 to have food intake acceleration

(mealCurveAlpha) 0.5 g/sec
2
 and initial food intake rate (mealCurveBeta) -0.2 g/sec. The

select statement is defined using SQWRL.

Goal expression:

SELECT_SQWRL::

PersonalisedGuidanceEvent(?pge) ^ hasSubject(?pge, ?subject) ^ hasDay(?pge,

?day) ^ hasMeal(?day, ?meal) ^ abox:hasValue(?subject, subjectID, 45) ^

abox:hasValue(?meal, mealType , "LUNCH") -> sqwrl:select(?meal)

::END

GOAL::

(mealCurveAlpha == 0.3) AND (mealCurveBeta == -0.2)

::END

FP7-610746 D3.2 Version 1.0

Page 39 of 45

UI tool output:

Select statement: PersonalisedGuidanceEvent(?pge) ^ hasSubject(?pge,

?subject) ^ hasDay(?pge, ?day) ^ hasMeal(?day, ?meal) ^

abox:hasValue(?subject, subjectID, 45) ^ abox:hasValue(?meal, mealType ,

"LUNCH") -> sqwrl:select(?meal)

GOAL 2

 Complex goal

 Left: GOAL 0

 Right: GOAL 1

 operator: AND

GOAL 0

 Left operand: mealCurveAlpha

 Right operand: 0.300000

 operator: ==

GOAL 1

 Left operand: mealCurveBeta

 Right operand: -0.200000

 operator: ==

The parser identifies the top goal (GOAL 2) of the parse tree as a complex goal consisting of

two sub-goals (GOAL 0 and GOAL 1) combined with the logical operator AND. The parsing

continues and the sub-goals are parsed as final leafs of the parse tree.

3.2.2 Goal Example 2

Description:

Request the aggregated activity level to be over 3 on the days-off for time between 17.00 and

19.00. Now the select statement is defined using SQL and we assume that there is a table

ActivityLevelData in the relational database containing the local indicators for the activity

level.

Goal expression:

SELECT_SQL::

SELECT activity_level, day FROM ActivityLevelData WHERE

ActivityLevelData.isWorkingDay == FALSE AND ActivityLevelData.idSubject ==

45 AND ActivityLevelData.startTime > "17:00:00" AND

ActivityLevelData.endTime < "19:00:00" GROUP BY day

::END

GOAL::

aggregatedActivityLevel(activity_level) > 3

::END

Parser Output:

Select statement: SELECT activity_level, day FROM ActivityLevelData WHERE

ActivityLevelData.isWorkingDay == FALSE AND ActivityLevelData.idSubject ==

45 AND ActivityLevelData.startTime > "17:00:00" AND

ActivityLevelData.endTime < "19:00:00" GROUP BY day

FP7-610746 D3.2 Version 1.0

Page 40 of 45

GOAL 0

Left operand: function "aggregatedActivityLevel" with argument:

activity_level

 Right operand: 3

 operator: >

The tool identifies a single goal with left operand to be an expression containing a function.

More specifically, the function is named aggregatedActivityLevel and operates on the

retrieved data of the column activity_level. The results of the function call shall be

calculated before the GOAL 0 is evaluated.

3.2.3 Goal Example 3

Description: An illegal expression is given to the parser.

Goal expression:

SELECT_SQWRL::

PersonalisedGuidanceEvent(?pge) ^ hasSubject(?pge, ?subject) ^ hasDay(?pge,

?day) ^ hasMeal(?day, ?meal) ^ abox:hasValue(?subject, subjectID, 45) ^

abox:hasValue(?meal, mealType , "LUNCH") sqwrl:select(?meal)

::END

GOAL::

(mealCurveAlpha == 0.3) AND (mealCurveBeta == -0.2

::END

Parser Output:

syntax error

The goal expression is not complete, since there is a missing left parenthesis at the second

sub-goal, and the parser yields an error message.

FP7-610746 D3.2 Version 1.0

Page 41 of 45

4 Conclusions

The present report, entitled “Formal ontology for the eating and activity behaviour domain”,

has documented the SPLENDID ontology for the eating and activity behaviour domain, has

provided the definition of a formal language for the prescription of personalised goals, and has

documented the usage of a UI tool for validating goal expressions.

First, the ontology was designed based on the UCs of D1.2 taking into consideration that it

should accurately describe the data model of SPLENDID system and allow accurate

description of the personalised behavioural goals. Furthermore, examples for using the

ontology as basis for system’s data model and communication interface design have been

presented.

Next, the formal language for goal expression was defined. The goal language allows the

definition of complex goals that consist of statements for retrieving the data and evaluating

the goal. The flexibility of the goal evaluation is achieved using various logical and

comparison operators along with the capability of using functions for data manipulation. A UI

tool for parsing behavioural goals is presented that allows syntactic evaluation and parsing of

the goals and examples are provided to demonstrate its functionality.

Concluding, we argue that the ontology and UI tool provide the groundwork for the final

modules that will be included in D3.3 and D3.4. Moreover, the present report can be of use by

the development teams of SPLENDID for the data model and communication interface

design.

FP7-610746 D3.2 Version 1.0

Page 42 of 45

References

[1] Crockford, Douglas. "The application/json media type for javascript object notation

(JSON)." (2006).

[2] O'Connor, Martin J., and Amar K. Das. "SQWRL: A Query Language for OWL."

OWLED. Vol. 529. 2009.

[3] Donnelly, Charles, and Richard Stallman. "Bison. The YACC-compatible Parser

Generator." (2004).

[4] Paxson, Vern. "Flex–Fast lexical analyzer generator." Lawrence Berkeley Laboratory

(1995).

FP7-610746 D3.2 Version 1.0

Page 43 of 45

A. Annex A – Software tool for goal expression

A.1 Source code

A.1.1 BNF used with Bison

%%

goal_expression: select_section goal_section

{ $$ = $2; }

;

select_section: SELECTSQL {

 select_statement = $1;

 $$ = $1;

}

| SELECTSQWRL {

 select_statement = $1;

 $$ = $1;

}

;

goal_section: GOAL goal END { root = $2; $$ = $2; }

function_call: IDENTIFIER LPAREN fn_arguments RPAREN

{

 current_goal = init_goal();

 current_goal->lval.function = $1;

 current_goal->lval.field = $3;

 $$ = $1;

}

| IDENTIFIER LPAREN RPAREN

{

 current_goal = init_goal();

 current_goal->lval.function = $1;

 current_goal->lval.field = NULL;

 $$ = $1;

};

fn_arguments: IDENTIFIER { $$ = $1; }

| STRING { $$ = $1; }

;

gen_field: IDENTIFIER {

 current_goal = init_goal();

 current_goal->lval.field = $1;

}

| function_call { $$ = $1; }

;

goal: LPAREN goal RPAREN { $$ = $2; }

| NOT goal {

 current_goal = init_goal();

 current_goal->goalop = not;

 current_goal->left = NULL;

 current_goal->right = $2;

 $$ = current_goal;

}

| goal AND goal {

 current_goal = init_goal();

 current_goal->goalop = and;

 current_goal->left = $1;

 ($1)->parent = current_goal;

 current_goal->right = $3;

 ($3)->parent = current_goal;

FP7-610746 D3.2 Version 1.0

Page 44 of 45

 $$ = current_goal;

}

| goal OR goal {

 current_goal = init_goal();

 current_goal->goalop = or;

 current_goal->left = $1;

 ($1)->parent = current_goal;

 current_goal->right = $3;

 ($3)->parent = current_goal;

 $$ = current_goal;

}

| gen_field OPERATOR FLOAT {

 current_goal->rval.rval_double = $3;

 current_goal->valop = value_operator($2);

 $$ = current_goal;

}

| gen_field OPERATOR INTEGER {

 current_goal->rval.rval_int = $3;

 current_goal->valop = value_operator($2);

 $$ = current_goal;

}

| gen_field OPERATOR STRING {

 current_goal->rval.rval = $3;

 current_goal->valop = value_operator($2);

 $$ = current_goal;

}

;

%%

A.1.2 Lexical analyser written in Flex

%{

#include "goal.h"

#include "goal_expression.tab.h" /* The tokens */

#define MAX_STR_LENGTH 32768

static char strbuf[MAX_STR_LENGTH];

static void append(char *dest, const char *source)

{

 if (strlen(dest) + strlen(source) > MAX_STR_LENGTH - 1) {

 return;

 }

 strcat(dest, source);

}

%}

%x string

DIGIT [0-9]

ID [a-zA-Z0-9_][a-zA-Z0-9_\-]*

INTEGER {DIGIT}+

FLOAT [\-]{DIGIT}+"."{DIGIT}*|{DIGIT}+"."{DIGIT}*

NUMBER {INTEGER}|{FLOAT}

SELECTSQL "SELECT_SQL::".+"::END"

SELECTSQWRL "SELECT_SQWRL::".+"::END"

OPERATOR "=="|"!="|">"|"<"|">="|"<="

%%

FP7-610746 D3.2 Version 1.0

Page 45 of 45

{SELECTSQL} { yylval.strval = strndup(&(yytext[13]), MAX_STR_LENGTH);

yylval.strval[strlen(&(yytext[13])) - 5] = '\0'; return(SELECTSQL); }

{SELECTSQWRL} { yylval.strval = strndup(&(yytext[15]), MAX_STR_LENGTH);

yylval.strval[strlen(&(yytext[15])) - 5] = '\0'; return(SELECTSQWRL); }

"GOAL::" { return(GOAL); }

"::END" { return(END); }

"AND" { return(AND); }

"OR" { return(OR); }

"NOT" { return(NOT); }

{OPERATOR} { yylval.strval = strndup(yytext, MAX_STR_LENGTH);

return(OPERATOR); }

{INTEGER} { yylval.intval = atoi(yytext); return(INTEGER); }

{FLOAT} { yylval.doubleval = atof(yytext); return(FLOAT); }

{ID} { yylval.strval = strndup(yytext, MAX_STR_LENGTH); return(IDENTIFIER);

}

"(" { return(LPAREN); }

")" { return(RPAREN); }

\" { BEGIN string; strbuf[0] = '\0'; }

<string>[^\\"\n]* { append(strbuf, yytext); }

<string>\\n { append(strbuf, "\n"); }

<string>\\t { append(strbuf, "\t"); }

<string>\" { yylval.strval = strdup(strbuf); BEGIN 0; return

STRING; }

<string>\\. { fprintf(stderr, "bogus escape '%s' in string\n",

yytext); }

<string>\n { fprintf(stderr, "newline in string\n"); }

[\t\n\r]+ /* eat up whitespace */

. { return(yytext[0]); }

%%

/* Additional C code */

int yywrap(void) {}

